4 A Numerical Study of Boson Stars

نویسندگان

  • Chi Wai
  • Kevin Lai
  • Lai
چکیده

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Date ABSTRACT ii ABSTRACT In this thesis we present a numerical study of general relativistic boson stars in both spherical symmetry and axisymmetry. We consider both time-independent problems, involving the solution of equilibrium equations for rotating boson stars, and time-dependent problems, focusing on black hole critical behaviour associated with boson stars. Boson stars are localized solutions of the equations governing a massive complex scalar field coupled to the gravitational field. They can be simulated using more straightforward numerical techniques than are required for fluid stars. In particular, the evolution of smooth initial data for a scalar field tends to stay smooth, in sharp contrast to hydrodynamical evolution, which tends to develop discontinuities, even from smooth initial conditions. At the same time, relativistic boson stars share many of the same features with respect to the strong-field gravitational interaction as their fermionic counterparts. A detailed study of their dynamics can thus potentially lead to a better understanding of the dynamics of compact fermionic stars (such as neutron stars), while the relative ease with which they can be treated numerically makes them ideal for use in theoretical studies of strong gravity. In this last vein, the study of the critical phenomena that arise at the threshold of black hole formation has been a subject of intense interest among relativists and applied mathematicians over the past decade. Type I critical phenomena, in which the black hole mass jumps discontinuously at threshold, were previously observed in the dynamics of spherically symmetric boson stars by Hawley and Choptuik [1, 2]. We extend this work and show that, contrary to previous claims, the subcritical end-state is well described by a stable boson star executing a large amplitude oscillation with a frequency in good agreement with that predicted for the fundamental normal mode of the end-state star from linear perturbation theory. We then extend our studies of critical phenomena to the axisymmetric case, studying …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Study of Solitonic Boson Stars in General Relativity

In the wake of the recent detection of gravitational wave signal GW150914, we investigate whether GW150914 could have been produced by something other than a binary black hole system. Our proposed candidate is a binary system of solitonic boson stars. The choice of solitonic boson stars is due mainly to the structural properties of their ground states, as solitonic boson stars are capable of fo...

متن کامل

A Numerical Study of Boson Stars: Einstein Equations with a Matter Source

The study of the properties and dynamics of self-gravitating bosonic objects in Einstein gravity was conducted. Bosons are promising candidates for dark matter. They can form compact objects through a Jeans instability mechanism. We studied boson stars made up of self-gravitating scalar fields, with and without nonlinear self-couplings. These are non-topological solutions of the coupled Einstei...

متن کامل

Evolution of 3D Boson Stars with Waveform Extraction

Numerical results from a study of boson stars under nonspherical perturbations using a fully general relativistic 3D code are presented together with the analysis of emitted gravitational radiation. We have constructed a simulation code suitable for the study of scalar fields in space-times of general symmetry by bringing together components for addressing the initial value problem, the full ev...

متن کامل

Boson Stars with Large Self-interaction in (2+1) dimensions: an Exact Solution

An exact solution for a nonrotating boson star in (2+1) dimensional gravity with a negative cosmological constant is found. The relations among mass, particle number, and radius of the (2 + 1) dimensional boson star are shown. PACS number(s): 04.20.Jb, 04.40.Dg Typeset using REVTEX ∗e-mail: [email protected], [email protected] 1 Self-gravitating systems have been investigated in ...

متن کامل

Rotating Boson Stars with Large Self-interaction in (2+1) dimensions

Solutions for rotating boson stars in (2+1) dimensional gravity with a negative cosmological constant are obtained numerically. The mass, particle number, and radius of the (2 + 1) dimensional rotating boson star are shown. Consequently we find the region where the stable boson star can exist. PACS number(s): 04.25.Dm, 04.40.Dg Typeset using REVTEX e-mail: [email protected], sak...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004